Резюме проекта, выполняемого

в рамках ФЦП

«Исследования и разработки по приоритетным направлениям развития научнотехнологического комплекса России на 2014 — 2020 годы»

по этапу № 3

Номер Соглашения Электронного бюджета: 075-15-2019-042, Внутренний номер соглашения 14.607.21.0169

Тема: «Разработка технологий переработки нефтезаводских газов в высокооктановые кислородсодержащие компоненты моторных топлив»

Приоритетное направление: Энергоэффективность, энергосбережение, ядерная энергетика (ЭЭ)

Критическая технология: Технологии энергоэффективного производства и преобразования энергии на органическом топливе

Период выполнения: 26.09.2017 - 30.06.2020

Плановое финансирование проекта: 125.10 млн. руб.

Бюджетные средства 75.00 млн. руб.,

Внебюджетные средства 50.10 млн. руб.

Получатель: Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук"

Индустриальный партнер: Акционерное общество "Газпромнефть - Московский НПЗ"

Ключевые слова: НЕФТЕЗАВОДСКИЕ ГАЗЫ, МОТОРНОЕ ТОПЛИВО, ВЫСОКООКТАНОВЫЕ КОМПОНЕНТЫ, ТРЕТБУТИЛОВЫЙ СПИРТ, ИЗОПРОПИЛОВЫЙ СПИРТ, ИЗОМЕРИЗАЦИЯ, ОКИСЛИТЕЛЬНОЕ ДЕГИДРИРОВАНИЕ, ДИМЕРИЗАЦИЯ, МЕТАТЕЗИС ОЛЕФИНОВ, ОКИСЛЕНИЕ, ГИДРАТАЦИЯ ОЛЕФИНОВ

1. Цель проекта

- 1) Разработка методов переработки нефтезаводских газов (НЗГ) в высокооктановые компоненты (ВОК) бензина, в том числе путем окисления, обеспечивающих увеличение производства высокооктанового бензина.
- 2) Расширение сырьевой базы нефтехимического комплекса России за счет вовлечения этан-этиленовой фракции (ЭЭФ) и фракции н-бутана НЗГ в процессы получения экологически безопасных ВОК на основе трет-бутилового спирта (ТБС) и изопропилового спирта (ИПС).

2. Основные результаты проекта

- 1) Разработаны новые эффективные и экологически безопасные методы переработки НЗГ в ВОК бензина на основе ТБС и ИПС, ориентированные на технические возможности АО «Газпромнефть-МНПЗ». Технология получения ТБС из н-бутановой фракции включает 2 стадии: изомеризацию н-бутана (фракции н-бутана) в изобутан и жидкофазное окисление изобутана в ТБС; обеспечивается общая селективность превращения фракции н-бутана в высокооктановый продукт на основе ТБС не ниже 70 масс.%. Технология получения ИПС из ЭЭФ включает 4 стадии: получение этилена окислительным дегидрированием ЭЭФ, получение бутенов димеризацией этилена, получение пропилена метатезисом этилена с 2-бутеном, получение ИПС гидратацией пропилена, обеспечивая общую селективность превращения ЭЭФ в высокооктановый продукт на основе ИПС не ниже 65 масс.%. Предложенные технические решения позволяют вовлечь фракции н-бутана и ЭЭФ в производство высокооктанового топлива, тем самым распирить сырьевую базу производства бензинов и продуктов нефтехимии.
- 2) Создана экспериментальная база в виде 6 лабораторных стендов ЛС-И, ЛС-ТБС, ЛС-ОДЭ, ЛС-Д, ЛС-МЕТ, ЛС-ИПС, на которых выполнены предусмотренные ТЗ экспериментальные исследования условий проведения процессов и стабильности катализаторов; разработана технологическая документация (6 лабораторных технологических регламентов), наработаны и испытаны экспериментальные образцы промежуточных продуктов и ВОК на основе ТБС и ИПС.
- 3) Проведено экспериментальное исследование свойств образцов конечных и промежуточных продуктов, определен их качественный и количественный состав в зависимости от условий реакций. Идентифицированы массовые/объемные доли целевых компонентов и побочных продуктов реакции, примеси которых могут оказывать негативное действие на качество конечных продуктов. Подтверждено соответствие свойств образцов требованиям Т3.
- 4) Разработана математическая модель и проведено моделирование каталитического процесса изомеризации н-бутана в изобутан. Кинетическая модель учитывает скорости образования основных и побочных продуктов. Рассчитаны профили

компонентов по длине слоя катализатора в реакторе ЛС-И для разных составов н-бутановых фракций НЗГ и показано, что для фракций с содержанием изобутана более 9% наблюдается заметное увеличение образования побочных продуктов С2, С3, С5. Математическая модель адекватно описывает процесс в условиях лабораторного стенда ЛС-И, может быть использована для теоретического анализа процесса при значениях состава реагентов, температуры, давления, нагрузки по сырью, предусмотренных Т3.

- 5) Предложен новый многокомпонентный Mo-V-Te-Nb-Se-O катализатор для переработки этан-этиленовой фракции НЗГ в этилен методом окислительного дегидрирования с выходом этилена не ниже 75%, что сопоставимо с лучшими результатами мирового уровня.
- 6) Впервые разработаны методы синтеза не имеющих аналогов гетерогенных катализаторов селективной димеризации этилена в 2-бутены на основе комплексов Ni (II) с иминопиридиновыми лигандами. Новые подходы к управлению реакционной способностью и селективностью гетерогенных катализаторов позволяют проводить процесс димеризации этилена в бутены-2 с недостижимым ранее сочетанием высокой конверсии исходного сырья, селективности по C_4 фракции и селективности C_4 фракции по 2-бутенам.
- 7) За счет средств индустриального партнера впервые разработан способ получения ТБС чистотой не менее 99,4 масс. % в непрерывном проточном режиме путем жидкофазного окисления изобутановой фракции кислородом, пропускания образующейся смеси через Со-содержащий гетерогенный катализатор, активный компонент которого не выщелачивается реакционной средой, и конденсации жидких продуктов. ТБС выделяется методом азеотропной ректификации с использованием воды и этилацетата в качестве разделяющих агентов.
- 8) За счет средств индустриального партнера в сертифицированной лаборатории ФБУ «Кемеровский ЦСМ» проведены исследовательские испытания на соответствие Техническому Регламенту Таможенного Союза 013/2011 образцов автобензина АИ-92: а) компаундированного ВОК на основе продуктов окисления фракции н-бутана (этилацетат, втор-бутилацетат, МЭК); б) компаундированного ВОК на основе экспериментальных образцов ТБС и ИПС. Испытания показателей качества бензина, содержащего ВОК на основе указанных выше продуктов, продемонстрировали повышение ИОЧ и МОЧ компаундированных бензинов после введения ВОК, по отношению к исходному АИ-92. Полученные бензиновые смеси выдержали испытания на соответствие нормам ТР ТС 013/2011.
- 9) За счет средств индустриального партнера проведены маркетинговые исследования по рынкам основных продуктов переработки н-бутановой и этан-этиленовой фракций НЗГ. Наиболее востребованными продуктами на рынке РФ являются уксусная кислота (УК), ИПС, этилацетат (ЭА) и метилэтилкетон (МЭК). Рынок ТБС находится в стадии формирования.
- 10) В связи с получением 6 РИД, способных к правовой охране (в том числе 3 на этапе 3 в 2019г.), проведены дополнительные патентные исследования в соответствии с ГОСТ Р 15.011-96 и составлены отчеты, в том числе на этапе 3 в 2019г. Инв.№10/19, 21/19, 22/19.
- 11) Запланированные на 3 этапе ПГ работы выполнены в полном объеме. Полученные результаты находятся на мировом уровне аналогичных разработок, а по некоторым направлениям превышают его, что полностью соответствует требованиям ТЗ соглашения о субсидии на выполнение ПНИЭР.

3. Охраноспособные результаты интеллектуальной деятельности (РИД), полученные в рамках прикладного научного исследования и экспериментальной разработки

- 1. Изобретение «Способ получения производных 2,6-бис[1-(фенилимино)этил]пиридина с электроноакцепторными заместителями», патент RU 2672868 с приоритетом 07.12.2017.
- 2. Изобретение «Катализатор изомеризации н-бутана в изобутан, способ его приготовления и процесс получения изобутана с использованием данного катализатора», патент RU 2693464 с приоритетом 12.11.2018.
- 3. Изобретение «Катализатор димеризации этилена в бутены и способ его приготовления», патент RU 2701511 с приоритетом 27.11.2018.
- 4. Изобретение «Способ получения бутенов в процессе димеризации этилена», патент RU 2707299 с приоритетом 29.04.2019.
- 5. Изобретение «Катализатор переработки этан-этиленовой фракции нефтезаводских газов», заявка на выдачу патента №2019138982 от 02.12.2019.
- 6. Изобретение «Способ получения трет-бутилового спирта», заявка на выдачу патента №2019139893 от 06.12.2019.

4. Назначение и область применения результатов проекта

Разработанные технологии переработки НЗГ могут быть реализованы на НПЗ РФ для увеличения выхода моторных топлив без роста объема перерабатываемой нефти. Переработка реальных ЭЭФ и н-бутановой фракции НПЗ в ВОК на базе ТБС и ИПС позволит повысить рентабельность и объем производства моторных топлив. Применение ВОК на основе спиртов способствует более полному сжиганию топлива и снижению вредных автомобильных выбросов.

5. Эффекты от внедрения результатов проекта

Увеличение выработки НЗГ в результате модернизация нефтепереработки характерно для всех НПЗ РФ. Разработанные в данном проекте технологии переработки этих газов в ВОК бензина представят интерес для большинства НПЗ, что гарантирует спрос на эти технологии на рынке РФ. Оценка ожидаемого экономического эффекта на примере АО «Газпромнефть-МНПЗ» показала, что дополнительный доход (разница между ожидаемой выручкой от реализации продуктов переработки сбросных газов и текущей выручкой от реализации исходного сырья) составит 1.65-2.5 млрд. рублей. При реализации результатов проекта в масштабах отрасли дополнительный доход может достичь 50-60 млрд. рублей.

6. Формы и объемы коммерциализации результатов проекта

Коммерциализация результатов проекта может происходить в форме частичной замены добавок на основе МТБЭ - ВОК на основе ТБС и ИПС. Их рыночный потенциал определяется объемом производства высокооктановых бензинов, который в последние годы составляет ~15 млн. т. Верхняя оценка потребности ТБС в целом по РФ ~0.5 млн. тонн при соотношении ТБС/МТБЭ в ВОК 30/70. На МНПЗ сложилась благоприятная ситуация по ресурсам изобутановой и н-бутановой фракций НЗГ. Переработка изобутана может дать от 20 до 50 тыс. т/год ТБС. Переработка ЭЭФ позволит получить до ~80 тыс. тонн в год ИПС. В связи со стабилизацией спроса на ВОК топлив, перед МНПЗ стоит задача развития производства ценных нефтехимических продуктов. В проекте разработана технология окисления фракции н-бутана в УК; переработка 80 тыс. т/год бутана позволит получать до 112 тыс. т/год УК, из продуктов окисления возможно также выделение до 25 тыс. т/год МЭК и ЭА, что может в значительной степени покрыть потребности рынка РФ в этих продуктах.

_	TT		•
/	Напичие	соисполнителе	14

77 ITALIA INC CONCINUITATION		
Федеральное государственное автономное образовательно исследовательский Томский государственный университет (НИ Т	3 1 · · ·	бразования «Национальный
Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук"		
директор		Бухтияров В.И.
(должность)	(подпись)	(фамилия, имя, отчество)
Руководитель работ по проекту		
заместитель директора по научной работе		Носков А.С.
(должность)	(подпись)	(фамилия, имя, отчество)
$M.\Pi$.		