Popular

РОДИКОВА Юлия Анатольевна

Каталитические системы на основе Мо-V-фосфорных гетерополикислот для селективного окисления 2,3- и 2,6-диметилфенолов в соответствующие *пара*-бензохиноны в жидкой фазе

02.00.15 - Кинетика и катализ

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата химических наук

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте катализа им. Г.К. Борескова Сибирского отделения Российской академии наук.

Научный руководитель: Жижина Елена Георгиевна

доктор химических наук, ст. науч. сотр.

Официальные оппоненты: Тарабанько Валерий Евгеньевич

доктор химических наук, профессор заведующий лабораторией комплексной переработки биомассы Института химии

и химической технологии СО РАН

Шульц Эльвира Эдуардовна

доктор химических наук, профессор заведующая лабораторией медицинской химии Новосибирского института органической химии им. Н.Н. Ворожцова

CO PAH

Ведущая организация: Федеральное государственное бюджетное

учреждение науки Иркутский Институт химии им. А.Е. Фаворского Сибирского

отделения Российской академии наук

Защита состоится «7» июня 2017 г. в 16 часов на заседании диссертационного совета Д 003.012.01, Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук по адресу: 630090, г. Новосибирск, пр. Академика Лаврентьева, 5.

С диссертацией можно ознакомиться в библиотеке Института катализа СО РАН и на сайте института http://www.catalysis.ru.

Автореферат разослан

«3» апреля 2017 г.

Ученый секретарь диссертационного совета, д.х.н., профессор РАН

О.Н. Мартьянов

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность работы</u>. Сегодня каталитические процессы на основе гетерополисоединений (ГПС) — интенсивно развивающаяся область исследований. Среди ГПС, пригодных для окислительного и/или кислотного катализа, *молибдованадофосфаты* (Мо-V-Р ГПС) — смешанные Мо-V-фосфорные гетерополикислоты (Мо-V-Р ГПК) и их соли (М $_{\rm p}$ Н $_{\rm q}$ ГПК, М — металл) — зарекомендовали себя в качестве перспективных *окислительных* и *бифункциональных* катализаторов. В настоящее время опубликовано множество статей, посвященных свойствам Мо-V-Р ГПС и их каталитической активности, однако применение этих ГПС в реакциях тонкого органического синтеза относительно слабо освещено в литературе.

Интерес к получению различных продуктов тонкой химии с Разработка применением каталитических технологий возник давно. эффективных методов окисления 2,3-диметилфенола (2,3-Ме₂Ф) и 2,6диметилфенола $(2.6-Me_2\Phi)$ представляется перспективной, поскольку продукты их окисления – 2,3-диметил-1,4-бензохинон (2,3-Ме₂БХ) и 2,6диметил-1,4-бензохинон (2,6-Ме,БХ) – широко востребованы. Указанные пара-хиноны используются в индивидуальном виде как мягкие окислители и акцепторы электронов, а также выступают в качестве предшественников для синтеза различных физиологически активных веществ, в том числе соединений c противопаразитарной, противоопухолевой и высокой антиоксидантной активностью. Это увеличивает спрос на данные диалкил-1,4-бензохиноны (ДАБХ) и требует разработки эффективных современных способов их получения, поскольку в качестве основного способа их синтеза до сих пор часто применяется метод окисления замещенных анилинов с использованием MnO₂ в H₂SO₄ при 3-10°C или Na₂Cr₂O₇ в H₂SO₄ при 20°C.

В литературе описано много методов получения указанных ДАБХ, в том числе и с использованием современных экологичных подходов: безопасных растворителей и безотходных окислителей, твердых закрепленных на

носителях катализаторов и т.д. Однако в большинстве таких способов существует проблема низкой селективности и/или неполной конверсии субстрата, а методы, в которых субстрат полностью окисляется в желаемый продукт, ограничивают сложность отделения катализатора и жесткость условий его регенерации, потеря активности катализатора на следующем цикле и большая длительность реакции. Эффективного способа получения 2,3-Ме₂БХ и 2,6-Ме₂БХ до сих пор не найдено, а применяемые методы связаны с затратами на отделение и очистку ДАБХ от побочных продуктов и примесей катализатора.

Наличие у водных растворов Мо-V-Р ГПС ряда уникальных особенностей (обратимая окисляемость, сохранение активности при повторном использовании, экологичный метод синтеза) позволяет рассматривать такие растворы в качестве перспективных гомогенных окислительных катализаторов, на основе которых могут быть созданы эффективные процессы окисления $2,3\text{-Me}_2\Phi$ и $2,6\text{-Me}_2\Phi$ кислородом в две стадии в отдельных реакторах по общим уравнениям (1) и (2).

$$^{\text{m}}/_{2} \text{Su} + ^{\text{m}}/_{2} \text{H}_{2}\text{O} + \Gamma \Pi \text{C} \longrightarrow ^{\text{m}}/_{2} \text{SuO} + \text{H}_{\text{m}}\Gamma \Pi \text{C}$$
 (1)

$$H_{m}\Gamma\Pi C + {}^{m}/_{4} O_{2} \longrightarrow \Gamma\Pi C + {}^{m}/_{2} H_{2}O$$
 (2)

На стадии (1) раствор ГПС окисляет субстрат (Su) в соответствующий хинон, восстанавливаясь на m электронов с образованием восстановленной формы $H_m\Gamma\Pi C$ ($V^V \to V^{IV}$). На стадии (2) ГПС регенерируется кислородом, замыкая каталитический цикл окисления субстратов с помощью O_2 .

<u>**Цель настоящей работы**</u> – определение основных закономерностей и поиск оптимальных параметров реакций двухстадийного окисления 2,3- и 2,6-диметилфенолов в соответствующие востребованные *пара*-хиноны в присутствии каталитических систем на основе растворов Мо-V-Р ГПС и экологически чистого и безотходного окислителя – кислорода.

Достижение поставленной цели предполагало решение следующих **задач**:

- 1. Синтез водных растворов Мо-V-Р ГПС десяти различных составов:
- а) Мо-V-фосфорных гетерополикислот структуры Кеггина (ГПК-х) бруттосоставов $H_5 PMo_{10} V_2 O_{40}$ (ГПК-2) и $H_7 PMo_8 V_4 O_{40}$ (ГПК-4);
- б) модифицированных Mo-V-фосфорных гетерополикислот (ГПК-х') брутто-составов $H_{13}P_3Mo_{15}V_6O_{74}$ (ГПК-6'), $H_{10}P_3Mo_{18}V_7O_{84}$ (ГПК-7'), $H_{11}P_3Mo_{18}V_8O_{87}$ (ГПК-8') и $H_{17}P_3Mo_{16}V_{10}O_{89}$ (ГПК-10');
- в) кислых солей Mo-V-P ГПК ($M_pH_q\Gamma\Pi K$) составов $Co_{0.6}H_{3.8}PMo_{10}V_2O_{40}$ ($Co_{0.6}\Gamma\Pi K$ -2), $Na_2H_5PMo_8V_4O_{40}$ ($Na_2\Gamma\Pi K$ -4), $NaH_{12}P_3Mo_{15}V_6O_{74}$ ($Na\Gamma\Pi K$ -6') и $Mn_2H_6P_3Mo_{18}V_7O_{82}$ ($Mn_2\Gamma\Pi K$ -7').
- 2. Изучение состава и свойств, а также определение температуры разложения свежеприготовленных водных растворов Мо-V-Р ГПС различными физико-химическими методами (ЯМР-спектроскопия на ядрах ³¹Р и ⁵¹V, рН-метрия, потенциометрия, титриметрия) для выявления наиболее перспективных растворов до этапа каталитических испытаний.
- 3. Исследование особенностей протекания реакций окисления 2,3-Ме₂Ф и 2,6-Ме₂Ф в соответствующие *пара*-хиноны в двухфазных системах в присутствии растворов Мо-V-Р ГПС в зависимости от различных параметров, таких как органический растворитель (ОР), температура, атмосфера (кислородсодержащая (воздух) или инертная), состав катализатора (содержание ванадия в растворе ГПС, природа внешнесферного катиона), для выявления взаимосвязи между распределением продуктов реакций и указанными параметрами, оптимизации состава каталитической системы и условий проведения реакций.
- 4. Изучение строения и распределения продуктов реакций окисления 2,3- $Me_2\Phi$ и 2,6- $Me_2\Phi$ в зависимости от реакционных условий методами газожидкостной хроматографии, хромато-масс-спектрометрии и ИКспектроскопии. Установление механизма реакций.
- 5. Оценка стабильности и расчет производительности оптимальных каталитических систем Mo-V-P ГПС/ОР в ходе многоцикловых исследований

двухстадийных процессов окисления $2,3-\text{Me}_2\Phi$ и $2,6-\text{Me}_2\Phi$ кислородом.

<u>Научная новизна</u>. В ходе выполнения поставленных в работе задач были получены следующие оригинальные результаты:

- Впервые проведено исследование реакций окисления диметилфенолов в присутствии модифицированных растворов ГПК-х'. Установлены основные закономерности, и найдены оптимальные параметры реакций окисления 2,3-Ме₂Ф и 2,6-Ме₂Ф кислородом в двухфазных системах в присутствии растворов Мо-V-Р ГПС, обеспечивающие селективность образования целевых хинонов выше 95%, что сопоставимо с показателями наиболее эффективных описанных в литературе каталитических систем.
- Определены эксплуатационные характеристики (окислительный потенциал, температура начала осадкообразования) синтезированных растворов ГПС. Показана возможность многоциклового использования высокованадиевых растворов $H_{11}P_3Mo_{18}V_8O_{87}$ (ГПК-8') и $H_{17}P_3Mo_{16}V_{10}O_{89}$ (ГПК-10') в реакциях окисления диметилфенолов без потери активности на примере 20 циклов, что значительно превосходит показатели наиболее эффективных катализаторов, описанных в литературе.
- Впервые проанализированы полученные на этапе подбора растворителя значения селективностей образования целевых *пара*-хинонов в сопоставлении с физическими свойствами исследованных растворителей и возможными направлениями сольватации исходных субстратов. Предложен подход для сокращения круга потенциальных растворителей при окислении различных субстратов в двухфазных системах в присутствии растворов Мо-V-Р ГПС. Предложен механизм реакций окисления 2,3-Ме₂Ф и 2,6-Ме₂Ф.

<u>Практическая значимость работы</u>. Настоящая работа является частью исследования, направленного на создание технологии непрерывного получения востребованных алкилзамещенных *пара*-хинонов путем каталитического двухстадийного окисления соответствующих фенолов в двухфазных системах в присутствии водных растворов Mo-V-P ГПС.

Детальный анализ экспериментальных данных позволил разработать способы получения napa-бензохинонов (2,3-Me₂БX и 2,6-Me₂БX) с селективностью выше 95% при полной конверсии субстратов и производительностью 41-48 $\Gamma_{\text{хинона}} \cdot \Gamma_{\text{кат}}^{-1} \cdot \Psi^{-1}$. Полученные данные могут быть использованы при масштабировании реакций и моделировании аппаратуры опытных установок для синтеза указанных продуктов.

Полученная на примере данных соединений информация о механизме и кинетических закономерностях протекания подобных реакций в присутствии растворов высокованадиевых ГПК-х' позволит расширить круг субстратов и облегчит оптимизацию условий их окисления, а также позволит оценить возможность получения различных востребованных хинонов с помощью одного и того же аппаратного обеспечения.

Предложенный подход к анализу влияния природы органического растворителя на скорость и селективность исследованных реакций может быть использован для сокращения круга потенциальных растворителей при окислении родственных субстратов в присутствии растворов Мо-V-Р ГПС.

Положения, выносимые на защиту:

- 1. Кинетические данные о протекании реакций окисления 2,3-Ме₂Ф и 2,6-Ме₂Ф в присутствии растворов Мо-V-Р ГПС, позволяющие судить о зависимости скорости реакций и состава продуктов от различных параметров, таких как растворитель, температура, атмосфера, состав и концентрация катализатора, мольное отношение $[n_v v]/[cyбстрат]$.
- 2. Результаты исследования состава и физико-химических свойств использованных в работе катализаторов до и после реакций, полученные методами ЯМР-спектроскопии на ядрах 31 P и 51 V, рН-метрии, потенциометрии и титриметрии.
- 3. Результаты исследования состава и строения продуктов реакций, полученные методами хромато-масс-спектрометрии, газожидкостной хроматографии и ИК-спектроскопии.

- 4. Оптимизированные условия реакций окисления $2,3\text{-Me}_2\Phi$ и $2,6\text{-Me}_2\Phi$ в присутствии растворов Mo-V-P ГПС для получения наилучших селективностей целевых хинонов.
- 5. Заключение о производительности и оптимальных эксплуатационных условиях наиболее эффективных катализаторов.
- 6. Выводы о возможном механизме реакций окисления диметилфенолов и принципах влияния используемого органического растворителя на распределение продуктов.

Апробация работы. Результаты диссертационного исследования докладывались на российских и международных конференциях, среди которых Кластер конференций по органической химии «ОргХим-2013» (Санкт-Петербург, 2013), II Российский конгресс по катализу «РОСКАТАЛИЗ» (Самара, 2014), XII European Congress on Catalysis (Kazan, 2015), X International Conference "Mechanisms of Catalytic Reactions" (Svetlogorsk, 2016). По теме диссертации опубликовано 4 статьи в рецензируемых российских и зарубежных научных журналах, а также 7 тезисов докладов.

Структура и объем диссертации. Диссертация изложена на 130 страницах и состоит из списка принятых сокращений и условных обозначений, введения, 4 глав, основных выводов и результатов работы, приложения, списка опубликованных по теме диссертации работ и списка использованной литературы, включающего 212 наименований. Работа содержит 69 уравнений, 14 рисунков, 23 таблицы, 1 схему и 21 формулу соединений.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Первую главу диссертации представляет литературный обзор, состоящий из 8 разделов. В первом разделе рассматриваются особенности строения анионов Мо-V-Р ГПС. Раздел 2 посвящен особенностям и свойствам водных растворов Мо-V-Р ГПС, анализу их состава. Здесь же рассмотрены

процессы, которые могут протекать между присутствующими в растворе частицами. Раздел 3 иллюстрирует важные реакции, выполненные в присутствии Mo-V-P ГПК, подчеркивая растущий интерес к данному типу ГПС. Существующие методики синтеза водных растворов Mo-V-P ГПС, их преимущества и недостатки обсуждаются в четвертом разделе литературного обзора. В пятом разделе рассматриваются предполагаемый механизм и особенности реакции регенерации катализаторов на основе водных растворов Мо-V-Р ГПС. Некоторые области применения 2,3-Ме₂БХ и 2,6-Ме₂БХ кратко рассматриваются в разделе 6. Приведенные примеры свидетельствуют о росте востребованности указанных хинонов И позволяют обосновать необходимость разработки эффективных методов их получения. В разделе 7 представлен краткий обзор наиболее перспективных методов получения указанных хинонов из соответствующих фенолов, даны сравнительный анализ описанных способов и обоснование необходимости разработки новых эффективных методов. Основные выводы из литературного обзора, обосновывающие тему и выбор цели диссертации, представлены в разделе 8.

Вторая глава диссертации состоит из 6 разделов и представляет собой методическую часть работы. Здесь приведены сведения об использованных в работе реактивах, описаны экспериментальные установки, подробные методики синтеза, анализа и регенерации растворов катализаторов на основе Мо-V-Р ГПС, методика окисления субстратов и анализа продуктов реакций.

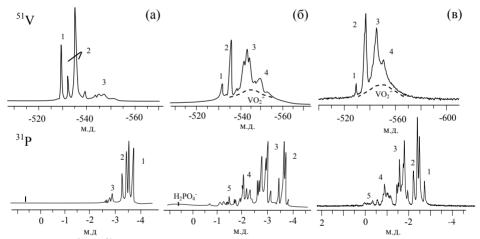
Синтез водных растворов Mo-V-P ГПК-х и ГПК-х' проводили из V_2O_5 , 30% H_2O_2 , MoO₃ и 85% H_3PO_4 в два этапа с использованием современного экологичного *пероксидного метода* по уравнениям (3) и (4), соответственно, через промежуточное получение растворов $H_6V_{10}O_{28}$ и $H_9PV_{14}O_{40}$.

$$(12-x) MoO_3 + (1-x/_{14}) H_3PO_4 + x/_{14} H_9PV_{14}O_{42} + x/_7 H_2O \longrightarrow H_{3+x}PMo_{12-x}V_xO_{40}$$
 (3)

$$\text{y MoO}_3 + (\text{z-(}^{\text{x'}}\!/_{14}\text{)}) \ \text{H}_3 \text{PO}_4 + (^{\text{x'}}\!/_{14}) \ \text{H}_9 \text{PV}_{14} \text{O}_{42} + \text{c H}_2 \text{O} \quad \longrightarrow \quad \text{H}_a \text{P}_z \text{Mo}_y \text{V}_{\text{x'}} \text{O}_b \qquad \textbf{(4)}$$

Растворы кислых солей $M_pH_q\Gamma\Pi K$ получали частичной нейтрализацией соответствующих кислот путем введения стехиометрического количества

карбоната или гидроксокарбоната металла при нагревании.


Стадию окисления 2,3-Ме₂Ф и 2,6-Ме₂Ф (целевые реакции) проводили в стеклянном реакторе на 50 мл, снабженном обратным холодильником, при атмосферном давлении в двухфазной системе: водный раствор ГПС/раствор субстрата в органическом растворителе (ОР). Точную навеску Su растворяли в ОР и вводили (по частям или сразу) в реактор с заданным количеством термостатированного раствора ГПС. Реакции вели при интенсивном перемешивании реакционных смесей на магнитной мешалке в интервале температур 25-70°C. При проведении реакций в инертной атмосфере реактор предварительно продували десятикратным объемом соответствующего газа и оставляли на время реакции минимальный поток газа на входе в реактор. По завершении реакций (контроль методом ГЖХ) фазы разделяли в делительной воронке, следы продуктов из водной фазы извлекали экстракцией хлороформом, органическую фазу двукратно промывали водой. Остаточное содержание тяжелых металлов в пробе $O\Phi$ не превышало 10^{-8} - 10^{-10} М. Пробу ОФ анализировали методами ГЖХ и ГХ-МС.

Водные растворы восстановленных ГПС регенерировали кислородом в отдельном реакторе при повышенной температуре, определяемой по формуле $(T_{\rm p}$ - $10^{\rm o}$ C) из установленной экспериментально температуры разложения растворов $T_{\rm p}$, и давлении кислорода 4 атм. Регенерированный раствор использовали вновь на следующем цикле целевой реакции.

Третья глава диссертации включает пять разделов и содержит результаты физико-химических исследований растворов синтезированных Mo-V-P ГПС до этапа каталитических испытаний методами 31 P и 51 V ЯМР-спектроскопии, pH-метрии и потенциометрии, а также результаты исследования их термической стабильности и определения содержания V^{IV} .

Анализ данных, полученных методом ЯМР, подтвердил, что все синтезированные растворы Мо-V-Р ГПК как кеггиновского (ГПК-х), так и модифицированного брутто-составов (ГПК-х'), а также их кислые соли

М_пН_дГПК являются сложными равновесными смесями. Они содержат набор частично или полностью диссоциированных кеггиновских ГП-анионов состава $H_{x-1}PMo_{12-x}V_xO_{40}^{4-}$ с различным числом атомов ванадия \mathbf{x} (набор различных $\Gamma\Pi A$ -х), а также ионы VO_2^+ и $H_z PO_4^{(3-z)}$ и отличаются друг от ГПА друга относительной интенсивностью линий отдельных и расположением этих линий (химическими сдвигами) в зависимости от кислотности растворов (рис. 1). На спектрах ЯМР для каждого $\Gamma\Pi A-x_{\pm 1}$ наблюдается тонкая структура в виде интервалов химсдвигов, обусловленная присутствием позиционных изомеров. Относительное содержание ГПА с высокими значениями \mathbf{x} , а также содержание ионов VO_2^+ в растворах ГПС yвеличиваются с ростом x в брутто-формуле раствора, а также при переходе от ГПК-х к ГПК-х'.

Рисунок 1. 31 Р и 51 V ЯМР-спектры 0.40 М раствора ГПК-2 (а), 0.20 М раствора ГПК-4 (б) и 0.25 М раствора ГПК-7'. Цифры 1-5 соответствуют частично протонированным ГПА с $x = 1 \div 5$.

Отличительными особенностями модифицированных растворов ГПК-х' и растворов их кислых солей $M_pH_q\Gamma\Pi K$ -х' являются повышенное содержание ванадия, а также мольное отношение P/(Mo+V), превышающее характерное для растворов ГПК-х соотношение 1/12. Внешняя схожесть ^{31}P ЯМР спектров растворов $\Gamma\Pi K$ -х и $\Gamma\Pi K$ -х' при отсутствии в спектрах последних

выраженного пика H_3PO_4 и посторонних пиков, не относящихся к различным ГПА-х, позволила предположить, что избыток ванадия в растворах ГПК-х' находится в виде оксокатионов VO_2^+ , связанных внешнесферно с кеггиновскими ГПА и избытком $H_zPO_4^{(3-z)}$.

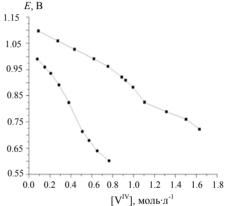
Значения рH, окислительного потенциала E, содержания V^{IV} и V^{V} , а также температуры начала осадкообразования T_p представлены в таблице 1.

Таблица 1. Физико-химические характеристики свежесинтезированных растворов ГПС.

Состав раствора	Концентрация раствора ГПС	Содержание V ^{V б} V ^{IV а}		E	pН	Т р В
	[моль·л ⁻¹]	[моль·л ⁻¹]		[B]		[°C]
$\begin{array}{c} H_5 P M o_{10} V_2 O_{40} \\ Co_{0.6} H_{3.8} P M o_{10} V_2 O_{40} \end{array}$	0.40	0.77	0.03	1.074	-0.19	190
	0.40	0.77	0.03	1.058	-0.14	195
$H_7PMo_8V_4O_{40} \ Na_2H_5PMo_8V_4O_{40}$	0.20	0.77	0.03	1.033	0.31	140
	0.20	0.77	0.03	0.969	0.59	135
$\begin{array}{c} H_{13}P_{3}Mo_{15}V_{6}O_{74} \\ NaH_{12}P_{3}Mo_{15}V_{6}O_{74} \end{array}$	0.25	1.43	0.07	1.084	-0.32	185
	0.25	1.43	0.07	1.065	-0.17	190
$\begin{array}{c} H_{10}P_{3}Mo_{18}V_{7}O_{84} \\ Mn_{2}H_{6}P_{3}Mo_{18}V_{7}O_{82} \end{array}$	0.25	1.66	0.09	1.097	-0.34	190
	0.25	1.66	0.09	0.998	0.09	175
$\begin{array}{c} H_{11}P_{3}Mo_{18}V_{8}O_{87} \\ H_{17}P_{3}Mo_{16}V_{10}O_{89} \end{array}$	0.25	1.89	0.11	1.104	-0.32	185
	0.25	2.38	0.12	1.112	-0.31	180

^а Определяли титрованием растворов с использованием KMnO₄ в присутствии H₃PO₄

Растворы Мо-V-Р ГПК как кегтиновского, так и модифицированного брутто-состава обладают значениями рН < 1 и высокими значениями E, превышающими 1 В. При этом кислотность модифицированных растворов ГПК-х' значительно выше кислотности растворов ГПК-х, что достигается введением повышенных количеств H_3PO_4 в ходе синтеза. Это обеспечивает увеличение их термической стабильности и устойчивости к образованию гидратированных осадков V_2O_5 · nH_2O , поскольку устойчивость катионов VO_2^+ и VO^{2+} увеличивается в кислых средах. При снижении концентрации раствора, а также с ростом х наблюдаются увеличение содержания оксокатионов VO_2^+ в растворе и снижение его кислотности. Это можно


⁶ Рассчитывали как х: $[Mo-V-P\ \Gamma\Pi C]-[V^{IV}]$. ^в Раствор нагревали до 130°C, выдерживали при заданной температуре в течение часа, охлаждали и проверяли на наличие осадка. При отсутствии осадка процедуру повторяли, увеличивая температуру на 5°C.

объяснить увеличением степени диссоциации раствора по уравнению (5).

$$(13-x) H_{3+x} PMo_{12,x} V^{V}_{x} O_{40} + 12 H^{+} \iff (12-x) H_{2+x} PMo_{13-x} V^{V}_{x-1} O_{40} + 12 VO_{2}^{+} + H_{3} PO_{4} + 12 H_{2} O$$
 (5)

Модернизация метода синтеза растворов ГПК-х' позволила увеличить содержание ванадия в них в среднем в 2.3 раза по сравнению с растворами ГПК-х при сохранении гидролитической и увеличении термической стабильности. Это обеспечивает более плавное снижение E этих растворов в ходе восстановления и делает их более перспективными окислителями для каталитических реакций (рис. 2).

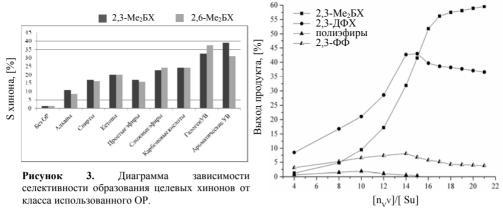

В ходе синтеза растворов кислых солей МрНаГПК из растворов ГПК происходит их частичная нейтрализация, то есть увеличение pH и, как следствие, уменьшение E. Это ведет к снижению степени лиссоциации находяшихся растворах ГП-анионов по уравнению (5) и, как результат, к частичному изменению относительного состава присутствующих в растворе частиц.

Рисунок 2. Зависимость окислительного потенциала E (B) от концентрации V^{IV} (M) для 0.25 M раствора ГПК-7' (\blacksquare) и 0.20 M раствора ГПК-4 (\bullet).

Четвертая глава состоит из 5 разделов и содержит результаты исследования кинетических особенностей реакций окисления 2,3-Ме₂Ф и 2,6-Ме₂Ф в присутствии растворов Мо-V-Р ГПС, а также результаты многоцикловых испытаний оптимизированных каталитических систем ГПС/ОР, анализа продуктов реакций и принципов влияния природы растворителя. Полученные данные суммируются в заключении к главе.

<u>В первом разделе</u> изложены экспериментальные данные по подбору оптимального OP, температуры, атмосферы, а также исследовано влияние содержания V^{V} в растворе ГПС, состава катализатора и природы внешнесферного катиона на значения S реакций (рис. 3 и 4, таблица 2).

Рисунок 4. Распределение продуктов в зависимости от мольного отношения $[n_v^v]/[Su]$ при окислении 2,3-Me₂ Φ в присутствии раствора ГПК-4.

Таблица 2. Определение оптимальных параметров реакций окисления 2,3- и 2,6-Ме₂ Φ в присутствии растворов ГПС.

<u>Условия</u> : 0.25 M раствор $H_{13}P_3Mo_{15}V_6O_{74}$ (ГПК-6'), $V_{\text{кат}} = 7.5$ мл ($n_V^{\ V} = 1.07 \cdot 10^{-2}$ моль), атм. O_2 ,											
бензо	бензол/трихлорэтилен, $V_{OP} = 5.5$ мл, мольное отношение $[n_v v]/[Su] = 20$. Навеску Su массой										
0.066	0.066 г (5.36·10-4 моль) растворяли в ОР и вводили в раствор катализатора сразу. Конверсия										
субст	грата 100%.										
	<i>T</i> , [°C]	25	30	35	40	45	50	55	60	65	70
S,	2,3-Me ₂ БX	40.1	48.3	54.6	59.8	64.3	69.8				
[%]	2,3-ДФХ	45.8	42.5	40.1	36.6	33.6	28.4				
	t, [мин]	60	54	49	44	40	36				
S,	2,6-Me ₂ БX	37.4	41.2	45.8	48.7	52.3	56.2	59.4	61.3	63.7	65.7
[%]	2,6-ДФХ	50.5	47.9	44.8	43.2	40.8	38.6	36.9	36.1	34.5	33.1
	<i>t</i> , [мин]	80	77	73	69	64	60	55	51	47	43

<u>Условия</u>: $0.20\,$ М раствор $H_7 P Mo_8 V_4 O_{40}\,$ (ГПК-4), $V_{\rm кат}=7\,$ мл ($n_{\rm V}v=5.39\cdot 10^{-3}\,$ моль), $50/70^{\circ} C$, бензол/трихлорэтилен, $V_{\rm OP}=5\,$ мл, мольное отношение [$n_{\rm V}v$]/[Su] = $20.\,$ Навеску Su массой $0.033\,$ г ($2.7\cdot 10^{-4}\,$ моль) растворяли в OP и вводили в раствор катализатора сразу. Конверсия субстрата 100%.

A	тмосфера	N_2	O_2	CO_2	
S,	2,3-Me ₂ БX	58.8	54.3	58.7	
[%]	$2,6$ -Ме $_2$ БХ	54.7	47.9	54.8	

<u>Условия:</u> водный раствор ГПС, мольное отношение $[n_{_{
m V}}v]/[{
m Su}]=17/18,\,n_{_{
m V}}v=0.0136/0.0144$ моль, бензол/трихлорэтилен, $V_{
m OP}=0.75\cdot V_{
m Kar},\,50/70^{\circ}{
m C},\,$ атм. N_2 . Навеску Su массой 0.099 г (8.02·10⁻⁴ моль) растворяли в OP и вводили в раствор катализатора сразу. Конверсия субстрата 100%.

Раствор ГПС		ГПК-2	ГПК-4	ГПК-6'	ГПК-7'	ГПК-8'	ГПК-10'	
S,	$2,3$ -Ме $_2$ БХ	43.5 конв. 92.3	56.4	72.2	78.4	83.1	92.1	
[%]	$2,6$ -Me ₂ δX	44.3 конв. 89.3	53.7	68.4	72.6	79.8	89.7	
$M_pH_q\Gamma\Pi C$		Со _{0.6} ГПК-2	Na ₂ ΓI	ТК-4	NaГПК	-6' M	In ₂ ΓΠΚ-7'	
S,	2,3-Me ₂ БX	41.1 конв. 92.0	51.6 в	51.6 конв. 98.6		73	73.2	
[%]	$2,6$ -Ме $_2$ БХ	40.4 конв. 88.9	48.7 B	юнв. 99.2	64.5	65	5.9	

Эксперименты по подбору данных параметров проводились с использованием растворов ГПС различных составов, поскольку показанный в главе 3 схожий состав синтезированных растворов позволяет предположить, что основные закономерности влияния указанных параметров будут идентичны для всех растворов.

Согласно данным ГХ-МС и ИК-спектроскопии, основными побочными продуктами в смесях с низкой по целевым хинонам селективностью являются тетраметил-4,4'-дифенохиноны ДФХ (преимущественно) и бесцветные низкомолекулярные ароматические простые полиэфиры (поли-диметил-n-фениленоксиды). В ряде случаев при недостаточной концентрации катализатора ($[n_V^v]/[Su] < 15$) также было зафиксировано образование [2,3-диметил-4-(2',3']- или [2,6-диметил-4-(2',6']-диметилфенокси)фенолов (ФФ). Их выходы, однако, не превышали 2%.

На первом этапе исследований было показано, что подбором правильного растворителя удается добиться эффективной сольватации субстратов и промежуточно образующихся радикалов, разрушая тем самым самоассоциаты фенолов и затрудняя рекомбинацию радикалов в побочные продукты (рис. 3). При переходе от наименее эффективных растворителей – алканов – к наиболее эффективным ОР – ароматическим углеводородам и галогеналкенам – удалось повысить *S* образования 2,3-Ме₂БХ и 2,6-Ме₂БХ практически в 3 раза (с 9.6 до 40.4% в бензоле и 7.4 до 37.6% в трихлорэтилене, соответственно). В ходе реакций не было отмечено образования значительных количеств продуктов окисления ОР.

Увеличение температуры реакций способствовало увеличению S образования целевых хинонов, а также росту скоростей реакций. Так, рост температуры до 50°C позволил увеличить S образования 2,3-Me₂БX в 1.7 раза (с 40.1 до 69.8%) при аналогичном сокращении времени реакции. В случае 2,6-Me₂БX увеличение T реакции до 70°C привело к росту селективности в 1.8 раза (с 37.4 до 65.7%) при сокращении времени реакции в 2 раза. Это

можно объяснить увеличением степени диссоциации ГПА по уравнению (5) с образованием VO_2^+ , а также увеличением подвижности данных оксокатионов, ответственных за окисление. Температурный интервал определялся физическими свойствами 2,3-Me₂БX и 2,6-Me₂БX, поскольку при T выше 55 и 73°C, соответственно, данные хиноны возгоняются, что требует применения специального охладительного оборудования для предотвращения их потерь.

Исключение возможности образования нестабильных перекисных соединений за счет взаимодействия интермедиатов реакций с O_2 (бескислородная атмосфера) также способствовало росту селективности образования 2,3-Me₂БX и 2,6-Me₂БX на 4 и 7%, соответственно.

Анализ влияния мольного отношения $[n_{v}^{v}]/[Su]$ и состава катализатора на скорость реакций и распределение продуктов подтвердил, что главными окисляющими частицами в подобных двухфазных реакциях являются оксокатионы VO₂⁺, концентрация которых увеличивается с ростом **x** в бруттоформуле ГПС. Для растворов с недостаточным мольным отношением $[n_{v}]/[Su]$ (например, ниже 17-18 для ГПК-4), а также для растворов низкованадиевых ГПК-х после быстрого отрыва первых электронов от молекул Su последующий их отрыв замедляется. Это объясняется существенным снижением концентрации свободного V^V (оксокатионов VO_2^+), так как прямое взаимодействие Su с присутствующими в растворе $\Gamma\Pi$ анионами осложняется большими размерами ГПА и проблемой их правильной ориентации на границе раздела фаз. Как результат, наблюдаются неполная конверсия Su и низкая S реакций (рис. 4) из-за высокой вероятности рекомбинации образующихся радикалов, поскольку при низкой концентрации VO₂⁺ в растворе начинают лимитировать этапы обмена электронами $(VO^{2+} \leftrightarrow VO_2^+)$ в составе различных ГПА по уравнению (6).

$$VO^{2^{+}} + H_{2}O \longrightarrow VO_{2}^{+} + 2H^{+} + e^{-}$$

$$H_{x+m+2}PMo_{12-x}V^{IV}_{m-1}V^{V}_{x-m+1}O_{40} + H^{+} + e^{-} \longrightarrow H_{x+m+3}PMo_{12-x}V^{IV}_{m}V^{V}_{x-m}O_{40}$$
(6)

В присутствии кислых солей $Na_2\Gamma\Pi K$ -4 и $Mn_2\Gamma\Pi K$ -7' наблюдалось

снижение S образования napa-хинонов на 5-7%, а с $Co_{0.6}\Gamma\Pi K$ -2 и $Na\Gamma\Pi K$ -6' — на 2-4% по сравнению с незамещенными кислотами, что объясняется снижением E и концентрации VO_2^+ в них с ростом pH.

Во втором разделе найденные наиболее эффективные катализаторы – растворы ГПК-8' и ГПК-10' – были исследованы в ходе *многоцикловых* испытаний для оценки стабильности их работы и определения условий, обеспечивающих наилучшую производительность. Поскольку для высокованадиевых растворов ГПК-х', отличающихся повышенной концентрацией оксокатионов VO_2^+ , найденные в разделе 1 на примере раствора ГПК-4 оптимальные мольные отношения $[n_V^{\, \text{v}}]/[\text{Su}]$ могут быть ниже, в рамках испытаний варьировались мольное отношение $[n_V^{\, \text{v}}]/[\text{Su}]$, значение E катализаторов до реакции (1), объем OP и способ введения Su.

Исследования показали, что с увеличением глубины восстановления раствора ГПС значение его окислительного потенциала E уменьшается, а pH возрастает. Рост pH можно объяснить протонированием восстановленных ГП-анионов, заряд которых становится более отрицательным из-за перехода V^V в V^{IV} , а также восстановлением VO_2^+ до VO^{2+} , протекающим с участием протонов по уравнению (6). Для раствора ГПК-10' характерна наименьшая степень снижения E в ходе реакции, что объясняется наибольшим содержанием в нем оксокатионов VO_2^+ . Порционное или покапельное введение субстрата обеспечивает высокое значение мгновенного мольного отношения катализатор/Su, что создает многократный избыток окисляющих частиц вокруг молекул Su и минимизирует вероятность протекания побочных реакций. Это позволяет снизить оптимальное мольное отношение $[n_V^{\,_V}]/[Su]$ для раствора $\Gamma\Pi K$ -8' до 13, а для $\Gamma\Pi K$ -10' – до 12 и 13 для 2,3-Me₂EX и 2,6-Me₂EX, соответственно.

При температуре 170°С и давлении 4 атм наиболее эффективный раствор ГПК-10' за 20 мин регенерируется до значений E, обеспечивающих S образования целевых хинонов выше 95%. Катализатор остается стабильным в

ходе регенерации и целевой реакции, сохраняя свои показатели не менее 20 циклов (рис. 5). Вид ЯМР-спектров регенерированных растворов ГПК-8' и ГПК-10' совпадает со спектрами свежеприготовленных растворов с незначительным их сдвигом в область высокого (51 V) и низкого (31 P) поля, что объясняется увеличением степени протонирования отдельных ГПА-анионов в результате незначительного роста остаточного содержания V^{IV} в растворе после регенерации катализаторов по сравнению со значениями, получаемым после синтеза. Структура ГПА сохраняется в ходе реакций.

98

97

На основе найденных оптимальных условий была рассчитана производительность реакций, которая составила 41-48 $\Gamma_{\text{хинона}} \cdot \Gamma_{\text{хинона}} \cdot \Gamma_{\text{хинона}} \cdot \Gamma_{\text{хинона}} \cdot \Gamma_{\text{хинона}} \cdot \Gamma_{\text{хинона}} \cdot \Gamma_{\text{хинона}} \cdot \Gamma_{\text{xunona}} \cdot$

Рисунок 5. Диаграмма зависимости выхода целевых хинонов от типа системы ГПС/ОР на примере трех циклов реакций.

2.6-Ме₂БХ

2,3-Me₂БX

В третьем разделе диссертации на основе совокупности полученных данных результатов исследования состава и строения продуктов реакций предложен ионрадикальный механизм реакций окисления 2.3- $Me_2\Phi$ $2,6-Me_2\Phi$ соответствующие napaхиноны В двухфазных

OH
$$R^2$$
 R^1 , $R^2 = -CH_3$, $R^3 = -H$ R^1 , $R^3 = -CH_3$, $R^3 = -H$ R^1 , $R^3 = -CH_3$, $R^2 = -H$ R^3 R^3

системах в присутствии водных растворов ГПС, представленный на схеме 1.

Согласно данному механизму, на начальном этапе реакций образуются радикалы u_1 и u_2 с очень высокой реакционной способностью, которые при недостаточно быстрой передаче электронов на молекулы ГПС (в присутствии низкованадиевых ГПС или при недостаточном мольном отношении $[n_V^{\,\mathrm{v}}]/[\mathrm{Su}]$) могут рекомбинировать $(u_1+u_2=\Phi\Phi,u_2+u_2=Д\Phi\mathrm{X})$ или вступать в реакции с нерадикальными частицами (Su + u_1 = полиэфиры), образуя побочные продукты.

В случае каждого окисляемого субстрата оптимальным оказывается свой органический растворитель, и поиск такого растворителя представляет собой трудоемкий процесс из множества экспериментов.

В четвертом разделе представлен анализ значений S образования целевых хинонов в зависимости от физических свойств использованных ОР. Предварительный анализ строения исходных Su и выявление возможных механизмов их сольватации молекулами растворителя с учетом физических OP получить свойств исследованных позволили ряд активности растворителей, хорошо согласующийся с экспериментальными данными: ароматические УВ ≈ галогеналкены > карбоновые кислоты > сложные эфиры > простые эфиры ~ кетоны > спирты > алканы. Показано, что такой подход позволяет значительно сократить круг потенциальных растворителей, однако совокупность и вклад возможных типов взаимодействия между субстратом и предполагаемым ОР нельзя точно рассчитать в рамках какой-либо модели. Для точного определения наиболее эффективного ОР необходимы испытания в условиях реакций.

ОСНОВНЫЕ ВЫВОДЫ И РЕЗУЛЬТАТЫ РАБОТЫ

1. В ходе сравнительного исследования ряда синтезированных растворов Мо-V-Р ГПК кеггиновского (ГПК-х) и модифицированного (ГПК-х') брутто-составов подтверждено, что данные растворы содержат идентичный набор частиц, включающий ГП-анионы кеггиновского состава с различным числом

атомов ванадия \mathbf{x} , катионы H^+ и VO_2^+ , а также анионы $\mathrm{H_zPO_4}^{(3-z)-}$. При переходе от ГПК-х к ГПК-х', а также с ростом \mathbf{x} в брутто-формуле содержание высокованадиевых ГПА и катионов VO_2^+ увеличивается, что отражается на спектрах ЯМР увеличением числа сигналов различных ГПА, а также их сдвигом и уширением за счет перекрывания с VO_2^+ . Показано, что данные растворы обладают близкими исходными характеристиками (pH < 1, $E_0 > 1$ B), однако их каталитическая активность отличается значительно.

- 2. Показано, что использование пероксидного метода синтеза растворов ГПК приводит к восстановлению до 6% присутствующего в растворе V^V до V^{IV} , что необходимо учитывать при исследовании каталитической активности таких растворов. Установлено, что более высокое содержание ванадия в растворах ГПК-х' (~ в 2.3 раза) по сравнению с растворами ГПК-х обеспечивает более плавное снижение E этих растворов в ходе восстановления и делает их наиболее перспективными обратимыми окислителями. Установлено, что стабилизация высокованадиевых растворов ГПК-х' избытком H_3PO_4 приводит к росту их термической стабильности по сравнению с ГПК-х с 140 до 180°C. Это позволяет сократить время их регенерации в 2 раза.
- 3. Впервые выполнено комплексное исследование реакций окисления 2,3- $Me_2\Phi$ и 2,6- $Me_2\Phi$ в двухфазных системах в присутствии высокованадиевых растворов ГПК-х². Показано, что повысить селективности целевых хинонов и максимально снизить вероятность протекания побочных реакций удается путем оптимизации состава двухфазных каталитических систем ГПС + OP и условий проведения реакций. Подтверждено, что окисляющими частицами в подобных реакциях являются оксокатионы VO_2^+ , образующиеся при диссоциации ГПА в растворах Mo-V-P ГПС с $\mathbf{x} > 2$. Снижение концентрации VO_2^+ в ходе окисления субстратов приводит к смене лимитирующей стадии с переноса электронов с субстрата на окислитель на реакции обмена электронами между катионами ванадия VO_2^+ и VO_2^{2+} в ГП-анионах.

- 4. Найдены оптимальные условия реакций:
- а) окисления 2,3-Ме₂Ф, обеспечивающие селективность 2,3-Ме₂БХ 97% при полной конверсии субстрата и производительность катализатора 48-51 $\Gamma_{\text{хинона}} \cdot \Pi_{\text{кат}}^{-1} \cdot \text{ч}^{-1}$: 0.25 М раствор $H_{17}P_3\text{Mo}_{16}\text{V}_{10}\text{O}_{89}$ (ГПК-10'), бензол, 50°C, атм. N_2 , мольное отношение $[n_V^{\text{v}}]/[\text{Su}] = 12$, $V_{\text{OP}} = 0.75 \cdot \text{V}_{\text{кат}}$, $E_0 > 1$ В, дробное введение субстрата, время реакции 30 мин;
- б) окисления 2,6-Ме₂Ф, обеспечивающие селективность 2,6-Ме₂БХ 95% при полной конверсии субстрата и производительность катализатора 40-44 $\Gamma_{\text{хинона}} \cdot \Pi_{\text{кат}}^{-1} \cdot \text{ч}^{-1}$: 0.25 М раствор $H_{17}P_3Mo_{16}V_{10}O_{89}$ (ГПК-10'), трихлорэтилен, 70°C, атм. N_2 , мольное отношение $[n_V^{\text{v}}]/[\text{Su}] = 13$, $V_{OP} = 0.8 \cdot \text{V}$ кат, $E_0 > 1$ В, дробное введение субстрата, время реакции 35 мин.
- 5. Предложен одноэлектронный ион-радикальный механизм окисления исследованных диметилфенолов в присутствии растворов Мо-V-Р ГПС, включающий формирование промежуточных высокореакционноспособных радикалов. Показано, что обеспечить наилучшую селективность образования целевых *пара*-хинонов и максимально снизить возможность взаимодействия промежуточных радикалов с образованием побочных продуктов ([2,2',3,3']- и [2,2',6,6']-тетраметил-4,4'-дифенохинонов, [2,3-диметил-4-(2',3']- и [2,6-диметил-4-(2',6']-диметилфенокси)фенолов и *поли*-диметил-пфениленоксидов) удается обеспечением в растворе избыточной концентрации окисляющих частиц (оксокатионов VO_2^+) путем правильного выбора состава катализатора и оптимального мольного отношения $[n_V^{\,\nu}]/[Su]$.
- 6. Установлено, что наиболее эффективные растворы высокованадиевых ГПК-8' и ГПК-10' стабильны как в оптимальных условиях целевых реакций, так и на стадии регенерации. При температуре 170° С и давлении кислорода 4 атм за 20 минут их восстановленные формы окисляются до значений Е, обеспечивающих S образования целевых хинонов > 94%, сохраняя гомогенность. Такие растворы полностью сохраняют активность при повторном использовании и пригодны для многоциклового применения не менее чем в 20 циклах, что делает их перспективными катализаторами для

Впервые рассмотрены принципы влияния природы органического растворителя на селективность реакций окисления 2,3-Ме₂Ф и 2,6-Ме₂Ф в присутствии растворов ГПС на основании анализа строения субстратов и свойств OP. Предложен исследованных ряд эффективности растворителей, хорошо согласующийся экспериментальными данными. Показана возможность сокращения круга потенциальных ОР путем предварительного анализа строения окисляемых субстратов (и предполагаемых интермедиатов реакций) и возможных типов их взаимодействия с растворителями при разработке новых процессов окисления с участием растворов ГПС.

Список опубликованных по теме диссертации работ

- 1. *Родикова, Ю.А., Жижина, Е.Г.* Катализаторы для получения 2,3,5-триметил-1,4-бензохинона ключевого полупродукта синтеза витамина Е // Химия в инт. уст. развития. 2012. Т. 20. № 6. С. 657-672.
- 2. *Rodikova, Yu.A., Zhizhina, E.G.* Trimethyl-1,4-benzoquinone synthesis via 2,3,6-trimethylphenol catalytic oxidation by oxygen in the presence of non-Keggintype Mo-V-phosphoric heteropoly acid solutions // J. Chem. Chem. Eng. 2013. V. 7. N. 9. P. 808-820.
- 3. Odyakov, V.F., Zhizhina, E.G., Rodikova, Yu.A., Gogin, L.L. Mo-V-phosphoric heteropoly acids and their salts: aqueous solution preparation challenges and perspectives // Eur. J. Inorg. Chem. 2015. V. 2015. N. 22. P. 3618-3631.
- 4. *Rodikova, Yu.A., Zhizhina, E.G., Pai, Z.P.* Alkyl-1,4-benzoquinones from synthesis to application // ChemistrySelect. 2016. V. 1. N. 10. P. 2113-2128.
- 5. *Родикова*, *Ю.А.*, *Жижина*, *Е.Г.* Растворы Мо-V-фосфорных гетерополикислот высокоэффективные катализаторы получения 2,3,5-триметил-1,4-бензохинона // Кластер конференций по органической химии «ОргХим-2013». Санкт-Петербург. 2013. С. 240.
- 6. *Родикова, Ю.А., Жижина, Е.Г.* Гомогенное каталитическое окисление замещенных фенолов и нафтолов в присутствии растворов гетерополикислот // II Российский конгресс по катализу «РОСКАТАЛИЗ». Самара. 2014. Т. 2.-C.126.
- 7. Дереча, М.И., Родикова, Ю.А. Каталитическое окисление 2,6диметилфенола в соответствующий *пара-*хинон в присутствии растворов

- гетерополикислот // 53-я Международная научная студенческая конференция «Студент и научно-технический прогресс» (МНСК-2015). Новосибирск. 2015. С. 14
- 8. Rodikova, Yu.A, Zhizhina, E.G., Pai, Z.P. Peculiarities of obtaining alkylsubstituted 1,4-benzoquinones in two-phase systems in the presence of Mo-V-P heteropoly acid solutions // XII European Congress on Catalysis "Catalysis: Balancing the use of fossil and renewable resources" (EuropaCat-XII). Kazan. 2015. P. 41576-1577.
- 9. Родикова, Ю.А., Жижина, Е.Г., Пай, З.П. Новый путь получения алкилзамещенных пара-бензохинонов в двухфазных системах в присутствии растворов Мо-V-фосфорных гетерополикислот // XXIX Научно-техническая конференция «Химические реактивы, реагенты и процессы малотоннажной химии» с участием иностранных учёных «РЕАКТИВ—2015». Новосибирск. 2015. С. 46.
- 10. Жижина, Е.Г., Гогин, Л.Л., Родикова, Ю.А., Пай, З.П. Возможные пути регенерации высокоэффективных катализаторов окисления на основе растворов Мо-V-фосфорных гетерополикислот // XXIX Научно-техническая конференция «Химические реактивы, реагенты и процессы малотоннажной химии» с участием иностранных учёных (РЕАКТИВ-2015). Новосибирск. 2015. С. 64.
- 11. *Rodikova, Y.A, Zhizhina, E.G., Pai, Z.P.* Kinetic peculiarities of alkylphenol oxidation using heteropoly acids // X International Conference "Mechanisms of Catalytic Reactions" (MCR-X). Svetlogorsk. 2016. P. 233.

РОДИКОВА Юлия Анатольевна

ГРУППА КАТАЛИЗАТОРОВ И ПРОЦЕССОВ НА ОСНОВЕ ГЕТЕРОПОЛИКИСЛОТ

Автореф. дисс. на соискание ученой степени кандидата химических наук.

Подписано в печать 03.04.2017. Заказ № 18. Формат 60х84/16. Усл. печ. л. 1. Тираж 100 экз. Отпечатано в Издательском отделе Института катализа СО РАН 630090, Новосибирск, проспект Академика Лаврентьева, 5 http://www.catalysis.ru